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Abstract

The results of molecular dynamics simulations of the properties of water in an aqueous ionic

solution close to an interface with a model metallic electrode are described. In the simulations the

electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions

with charged species, and it is maintained at a constant electrical potential with respect to the

solution so that the model is a textbook representation of an electrochemical interface through

which no current is passing. We show how water is strongly attracted to and ordered at the electrode

surface. This ordering is different to the structure that might be imagined from continuum models

of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching

the surface. We describe the concomitant motion and configurations of the water and ions as

functions of the electrode potential, and we analyze the length scales over which ionic atmospheres

fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength.

The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of

the aqueous environment near a metal surface. The importance of this finding for a description

of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free

energy profiles for transfer of charge between the electrode and a redox species in the solution and

comparing the results with the predictions of continuum theories. Significant departures from the

electrochemical textbook descriptions of the phenomenon are found and their physical origins are

characterized from the atomistic perspective of the simulations.
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I. INTRODUCTION

The altered solvation, dielectric and dynamical properties of water molecules close to

electrode surfaces have an important influence on electrochemical reactions. There have

been numerous simulation studies of aqueous solutions close to charged solid surfaces which

have cast light on the ordering of water molecules by the solid surface and begun to make the

connection between the layers with altered dielectric characteristics invoked in continuum

models of the electrode capacitance and the ordered molecular films which are known from

surface science. References [1] contain an excellent summary of work to date, and [2, 3] a

more longstanding review. To complete the link between molecular behaviour and electro-

chemical observations we need a realistic representation of the electrochemical interface and

a direct way of calculating the electrochemical observable, namely the dependence of the

rate of the electrochemical electron transfer on the potential applied to the electrode [4].

What is required to achieve the second of these objectives is suggested by the Marcus

theory of electron transfer [5, 6]. In a Marcus description of the oxidation of some solution

species R to an oxidised species O by transfer of an electron to an electrode maintained at

some potential V with respect to the solution we construct curves, as illustrated schemati-

cally in figure 1, which describe how the free energies of O and R depend upon some reaction

coordinate, which is envisaged as reflecting the influence of fluctuating solvent degrees of

freedom. The Marcus expression for the rate of electron transfer can be calculated from the

probability that the system will access the configuration where the two curves cross. Note

that the free energy curve for O includes the potential energy of the electron on the electrode

(eV ), so that the position and height of the crossing point depend on the electrode poten-

tial. The two curves are coupled by a term (γ) which reflects the tunneling of the electron

between the redox centre and the electrode, and this is expected to depend exponentially on

its distance from the electrode surface. We should, therefore, be thinking about the depen-

dence of the Marcus curves on the proximity to the electrode surface, to which two factors

contribute. Firstly, the difference between the direct interactions of the O and R species

with the charged surface itself will produce a differential shift on them, and therefore affect

the crossing point. Secondly, if the redox species is close to the electrode, the competing

interactions of the water molecules in its coordination shell with the surface and the solute

itself may result in a change in the character of the fluctuations of the reaction coordinate.
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Both of these factors may be affected by the potential applied to the electrode. The Marcus

curves contain the information which is required to calculate the electron transfer rate for

a redox ion at a given distance from the electrode surface, but to complete the calculation

of the rate we also need to know the probability of the reactant reaching this position, and

this too will be affected by the potential exerted by the electrode and its influence on the

solvating properties of the water molecules.

Blumberger, Sprik and co-workers [7, 8] have demonstrated how the Marcus curves can

be calculated for a homogeneous electron transfer reaction within an ab initio molecular

dynamics scheme. Following Warshel [9] they emphasize the advantages for computation of

choosing the “vertical energy-gap” as the reaction coordinate. The vertical energy gap for

oxidation is calculated for a single configuration in a simulation by switching the identity

(and all associated interaction parameters) of a redox species initially in its reduced form R

to its oxidised form without allowing any changes in the nuclear coordinates (hence a “ver-

tical” transition in the Franck-Condon sense) and evaluating the energy difference between

the final and initial states. The Marcus curves for the oxidised and reduced species may

then be estimated from the probability distributions of the vertical energy gaps obtained

by repeatedly sampling through the course of an molecular dynamics (MD) simulation and

assuming this distribution is Gaussian. The Gaussian assumption is required by this method

because regions of the distribution pertinent to the charge transfer reaction are not generally

accessed in a straightforward simulation. In the calculations reported here, the Gaussian

approximation is tested and shown to be accurate. More generally, the Gaussian approxi-

mation has been tested and found to be accurate [10, 11] provided proper account is taken

of molecular boundary conditions [12]

Use of this scheme to study the electrochemical electron transfer process in a simulation

is illustrated in figure 2. An aqueous solution is contained between two crystalline arrays of

atoms which comprise the (metallic) electrodes, these are maintained at a definite electrical

potential. The solution contains the redox species in its reduced and oxidised forms and,

periodically during the simulation, an ion (the “redox target”) is selected and its redox

state is switched and the energy difference between final and initial states is evaluated. By

selecting ions at different distances from the electrodes and by examining how the vertical

energy gaps depend on the applied potential we can build up the necessary information

to study how the nature of the water at the electrode surface affects the electrochemical
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electron transfer rate via the Marcus construction.

In order to make contact with experimental studies the calculation needs to be done with

as realistic representation of the constant-potential electrode and interfacial water as can be

managed. Ideally, it would be done within an ab initio MD scheme, as this would enable the

difficult-to-characterise interactions between the solution and the electrode to be modelled

without the introduction of interaction potentials [1, 13, 14]. However, the time and length

scales involved in the relaxation of the solution in the vicinity of the electrodes (which we will

characterise below) are far too long to allow a full self-consistent description of the screening

of the electrode potential within an ab initio scheme [15]. Recently we introduced a way

of incorporating some of the essential physical effects necessary for a realistic description of

the interfacial charge-transfer process into a simulation which uses interaction potentials and

therefore enables simulations of much larger time and length scales than is possible ab initio

[16]. In particular, model metallic electrodes maintained at a constant electrical potential

may be introduced into such a simulation, following a technique introduced by Siepmann

and Sprik [17]. Because the electrodes behave as ideally polarizable metals they support

image-charge interactions between charged species and the electrode; these, as we shall

see, have an important influence on the electron transfer process. Because the electrodes

are maintained at a constant potential when the charge of the redox species is changed to

sample the vertical energy gap, that charge is transferred in full to the electrodes, so that the

source of the dependence of the electron-transfer rate on the electrode potential is included

in the calculation. The electrode potential and the potential felt by the molecules and ions

in the solution region are calculated self-consistently. Calculations using these methods have

already been performed to examine the Marcus curves in simulations of redox active molten

salts [18].

We begin with a brief description of the methods and interaction potentials used to sim-

ulate pure water and aqueous solutions of LiCl and the Ru2+/Ru3+ couple confined between

model platinum electrodes. We then examine the structure and dynamical properties of the

electrode-adsorbed water and the way they are affected by the application of a potential to

the electrode. In sections III and IV we consider the consequences of this adsorbed water

for the approach of ions to the electrode surface and the effect of the adsorbed water and

the ionic atmosphere for the electrical potential in the vicinity of the electrode. In classical

models of electrochemical charge transfer this potential is invoked to represent the depen-
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dence of the energies of the oxidised and reduced species on the proximity to the electrode.

We then present preliminary results for the Marcus curves for the Ru2+/Ru3+ system and

discuss the physical factors which determine their dependence on the applied potential and

the proximity to the electrode.

II. SCOPE OF THE MODEL.

The electrochemical interface is affected by many phenomena and a comprehensive rep-

resentation of all of them within a single simulation is beyond current capabilities. Our

focus here is on the solution side of the interface, on the properties of the water molecules

at the interface and their influence on the electrical potential. As such we will present a

significantly simplified model of the electrode itself in which we ignore the motion of the

electrode atoms and therefore neglect effects like the restructuring of the electrode surface

under chemical or electrical influences [19]. Furthermore the representation of the electrode

as a metal is a simplified one, designed to capture the correct macroscopic response to an

electrical potential appropriate to a metal rather than to deal with a correct microscopic

description of surface electronic states etc.

As illustrated in figures 2 and 3, the electrodes each consist of three layers of atoms

arranged in an fcc lattice with the 100 face exposed to the solution; the lattice parameter

is appropriate to Pt. Following Siepmann and Sprik [17] each electrode atom i carries a

Gaussian charge distribution of fixed width but variable amplitude (qi). These charges are

coulombically coupled to all other charges in the system. They are treated as additional

dynamical degrees of freedom whose values are adjusted at each timestep in the molecular

dynamic procedure in order to variationally minimise an appropriate energy functional.

The energy functional is chosen [17] so that at its minimum the electrical potential on every

electrode atom is the same (as approriate to a metal) and equal to some pre-set value V0.

The use of a variational principle allows forces and response behaviour to be calculated

straightforwardly via an application of the Hellmann-Feynman Theorem, as used to good

effect in ab initio MD simulations. The methodology for the simulation of the electrodes is

described in great detail in ref [16], where it is shown that the electrodes become polarised

in the presence of a charge in the solution region in a way which corresponds to the classical

image-charge response. We illustrate this response in figure 3 where the charge induced
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on the electrode atoms by the instantaneous configuration of the charges in solution is

shown by colour-coding the electrode atoms. The bright blue region, for example, is caused

by the presence of an anion within the first molecular layer of the solution close to this

position. Furthermore, if the charge on one of the ions in solution is changed, the charge

difference is fully transferred to the electrodes to maintain charge neutrality with a constant

electrode potential [18]: it is this feature which enables us to calculate Marcus curves for

electrochemical charge transfer.

To describe the interactions between water molecules we use the SPC/E potential [20],

which is known to give a dielectric constant for water close to the experimental value.

The interactions of water molecules with a metallic electrode are complex, and cannot be

modelled accurately with a simple two-body potential; since the behaviour of water at the

interface is the central purpose of our study we were concerned to represent this interaction

as carefully as is possible through the introduction of a potential. Experiment [21] and

ab-initio studies [22] have shown that water molecules interact with a crystalline platinum

surface by adsorbing on top sites and orienting their dipole along the plane of the electrode.

In their study of water at an STM tip, Siepmann and Sprik [17] parameterized a two- and

three-body potential to describe the adsorption of water molecules on a platinum surface;

their potentials are particularly appropriate for our study since they do not include the

consequences of image interactions, which are dealt with through the polarizable electrode

model as in our simulations. We have used these potentials exactly as described in their

paper.

We have not attempted the same level of realism with the interactions between the ions

and the electrode surface. Experimental studies show that anions interact quite strongly

with transition metal surfaces to the extent that complete surface coverage of ordered layers

of Cl− is observed on positively charged single-crystal electrodes above about 0.5 V from

molar solutions [23]. Guymon et al have shown how suitable potentials to describe these

strong interactions could be obtained from ab initio calculations [24]. However, adsorption

of this strength would present a significant problem for our simulations since it would mean

that the solution region would be strongly depleted in Cl− ions. To represent the interface

under these conditions we would need to equilibrate our system in the presence of a reservoir

of electrolyte; furthermore equilibrating this system would be very slow, as we shall see. We

have, therefore, for the present study introduced only weakly attractive interaction potentials
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between the ions and the electrode surface – we use exponential-6 potentials to represent

the short-range interactions with the parameters chosen as if the atoms of the metallic walls

were themselves Cl− ions. These potentials are too weakly attractive, compared to the

water-electrode interactions, to lead to the kind of anion adsorption phenomena seen in

the experimental studies of Cl−-containing electrolytes. We note that fluoride ions are not

thought to form adsorbed layers [23] and so the picture of the interface we present may be

more representative of a fluoride than a chloride-containing solution.

The interactions between the other species present in solution were modelled with pair

potentials; this too reflects a compromise in the realism of the calculations as it is known that

polarisation effects have a significant influence on the way that ions interact and coordinate

water [25]. The water-ion interactions were modelled with a Lennard-Jones potential acting

between the ion and the oxygen center of the water molecule. The parameters used in these

interactions were adapted from Lynden-Bell [26]. The ruthenium ion - water interactions

were parameterized with a purely repulsive potential,

URu,O = A/|rRu − rO|9, (1)

with the parameter (A = 49977.9kJmol−1Å9 for both Ru2+ and Ru3+) chosen so that the

first peaks of the ion-water radial distribution agreed with those obtained in an ab initio

MD study [27]. The ions interact with each other with exponential-6 potentials with the

Ru-Cl potentials taken from lanthanides of corresponding ionic size [28, 29].

III. PURE WATER RESULTS

We begin by showing, in figure 4, results obtained for the profiles across the cell of the

mean electrical (or “Poisson”) potential, Ψ, in pure water. This is obtained by integrating

Poisson’s equation,

∇2Ψ = − ρ

ε0

, (2)

with the mean charge density, ρ, calculated from the simulation for different values of the

applied electrode potential, V0, as the source term (ε0 is the permittivity of free space). The

Poisson potential is the potential used in describing the potential at the electrochemical

interface in classical theories and is therefore an important point of contact between our

calculations and textbook descriptions of the electrochemical interface [4, 30]. The potential
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is constant on the interior of the electrodes and equal to the applied potential. It then

drops rapidly and oscillates across an interfacial region about 12 Å wide, for reasons we will

discuss in detail below, before settling down to acquire the constant slope appropriate to

the behaviour of the potential in a bulk dielectric subject to an external potential. Notice

that, other than at V0 = 0, the potential drops across the two interfaces are not symmetrical

because of the different microscopic arrangements of the water molecules at positively and

negatively charged surfaces.

We can calculate a value for the dielectric constant of water from the behaviour of the

potential across the bulk region. By integrating the mean charge in the region of the cell to

the left of 20 Å we can obtain a value for the charge, Q, on one plate of a virtual parallel

plate capacitor placed at this position; the region to the right of 61.5 Å has an equal and

opposite charge and can be regarded as the other plate. The potential drop between the

two plates is ∆Ψ and we can obtain values for the capacitance C from Q = C∆Ψ for the

different applied potentials. This calculated capacitance C can be compared with theoretical

expression for capacitance of parallel plates filed with a medium of dielectric constant ε,

C = εε0A/d, (3)

where A is the cross-sectional area of the cell and d the distance between the plates. The

calculation shows that the dielectric constant for SPC/E water depends on the applied

electrode potential. Specifically, when the electrode potential has the values V0 = 0.27

V, V0 = 1.36 V, and V0 = 2.72 V, the dielectric constant for the bulk water is ε = 75.07,

ε = 61.50, and ε = 57.30 respectively. The low voltage result is in reasonable agreement with

direct simulation studies (68±5.8 [31]), which is good confirmation that the potential and

the response of the water molecules to it are correct (see also reference [16]). The reduction

in the apparent dielectric constant at higher voltages is consistent with a saturation effect

[32], note that the potential difference of ∆Ψ ' 1.1 V, obtained with V0=2.72 V, across our

virtual capacitor of width 41.5 Å is equivalent to an electric field of ' 2.6× 108 Vm−1.

The rapid oscillation of the potential close to the interfaces is due to the strong adsorp-

tion of a layer of water molecules at the electrode surfaces. This is illustrated in figure 5.

The oxygen atoms of the water molecules form a commensurate layer on the top-sites of

the underlying 100 fcc surface. With zero applied potential the water molecules lie with at

least one O-H bond in the plane of the interface with the H-atom pointing towards a neigh-
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bouring oxygen and form ordered domains which reorient on a long timescale. Although

the predominant orientation is in-plane, at zero applied potential there is a net orientation

of the negative ends of the molecular dipoles towards the surface and this induces a small

positive charge on the electrode atoms [32].

When the potential is applied to the cell, the water molecules in the first layer partially

reorient in the interfacial field. This is illustrated in the right-most panel of figure 5 where

one of the OH bonds of the water molecules at the negatively charged electrode may point

towards the electrode surface (note that this potential is very large for aqueous electrochem-

istry). The consequences of this for the Poisson potential can be see by reference to the

right-hand interface in figure 4. Whereas at V0 = 0 the potential initially drops on moving

into the electrolyte, consistent with the negatively charged oxide ions being closest to the

surface, at the applied potential of V0 = −2.72 V, the potential now rises showing an excess

of positive charge lying close to the surface.

We can track these changes by showing the probability distributions of the orientation

of O-H bonds in the first and second layers of water molecules as the applied potential

is changed. We compute the probability distribution function P [cos(θ)], where θ is the

angle between an OH bond vector (the vector extending from the oxygen centre of a water

molecule to the centre of one of the associated hydrogen atoms) and the the outward normal

vector to the electrode surface. Fig 6 shows the distribution P [cos(θ)] for different values of

applied potential for the two electrodes. The left-hand panel of figure 6 shows the results

at the positively charged electrode and the right-hand panel at the negatively charged one.

At all values of the potential, the probability distribution is peaked around cos(θ) = 0,

corresponding to configurations for which the OH vector of a water molecule is aligned with

the plane of the electrode surface. At zero applied potential the distribution P [cos(θ)] for

the adsorbed molecules is the same for the two electrodes, but even at V0 = 0 there is an

excess of outward (negative cos(θ)) over inward pointing OH bonds, which give rise to the

potential drop between the electrode and solution noted above. At different values of applied

potential the distribution of OH vectors is changed significantly. At the positive electrode

(left panel of Fig. 6) the main effect of the electrode potential is to deplete the population

of OH bonds pointing into the electrode (cos(θ) < 0). At the negative electrode (right panel

of Fig. 6) however, at increased electrode potential there emerges a large population of OH

vectors which point into the electrode. This change in orientational structure at the negative
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electrode is yet another demonstration of the asymmetry between the solvent structure at

the positive and negative electrode.

The orientation of the adsorbed water molecules influences the charge induced on the

electrode atoms on which they sit. Figure 7 shows the distributions of the charges induced on

the atoms which make up the outermost layer of atoms on the negatively charged electrode.

At zero applied potential the average charge is small and positive, for the reasons discussed

above, but there is a significant number of negatively charged atoms which are associated

with an adsorbed water molecule with an inward-pointing O-H bond. As the electrode

potential becomes increasingly negative, so does the mean charge, but the bimodal character

of the distribution becomes even more pronounced as more water molecules flip an O-H bond

towards the electrode.

One question which arises from these results is the extent to which they are influenced

by the inclusion of image charge interactions in the potential model. A way of addressing

this question is to carry out constant charge simulations in which the values of the charges

on the electrode atoms are fixed at the values of the average charges on the first, second and

third layers of the electrode atoms obtained in constant potential runs with an electrode

potential V0. These static charge distributions generate similar electrode potentials to the

V0 values used in the constant potential runs used to generate them. It can be seen, from

the right-hand panel of figure 7, that the dynamical nature of the charges in the constant

potential simulations has only a small effect on the mean orientational distributions of the

water molecules in the adsorbed layer and none on the second layer. However, as illustrated

in figure 7 left-hand panel, there is a local response of the electrode in the constant potential

simulations and this is responsible for the emergence of a significant population of electrode-

pointing OH bonds in the directly adsorbed molecules; it is not observed in the simulations

run at constant charge. The relatively small effect of the image charges on average interfacial

structure parallels the findings in the molten salt simulations [16].

The layering of solvent and the molecular orientations within the layers adjacent to the

electrode affect the capacitance of the electrode, which can be measured experimentally.

The capacitance of the first two layers of solvent can be calculated through the differential

capacitance, C = (∂qm/∂∆Ψ), where qm is the charge density on the electrode and ∆Ψ is

the potential drop across the first two layers of water. Figure 8 shows the dependence of

∆Ψ on qm for several values of the applied potential. The plot reveals that the potential
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of zero charge (pzc) for our simulated system is at -0.8 V. Comparing this quantity with

experiment is not straightforward, since in the experimental measurements the potential is

quoted with respect to a reference electrode whereas we can access directly the potential

difference between the interior of the electrode and the solution. The experimental value

with respect to a standard hydrogen electrode is +0.41 V [4]. The capacitance for electrode

potentials which are on the positive side of the potential of zero charge (C = 8.39µF/cm2)

is larger than for negative potentials, C = 5.20µF/cm2. Both values are considerably lower

than predicted through experimental data which measures the the double layer capacitance

in the range of C = 20 − 50µF/cm2 [19, 33] close to the pzc. The substantial difference

between our calculated value and experiment is not surprising as our model does not include

a realistic description of the electron density at the metallic surface; the surface dipole

potential arises from the extension of the metal electrons into the interface beyond the

nuclei and makes a large contribution to the capacitance [33]. This effect can be included in

a jellium model for the metal, as included in the theory of Schmickler and Henderson [34].

IV. RESULTS FOR ELECTROLYTE SOLUTIONS

In figure 11 we show the Poisson potential for an approximately one molar solution of

LiCl. In contrast to the pure water case (figure 4) in the bulk region away from the interfaces,

the Poisson potential is now constant as a consequence of the screening by the ions present

in the solution. The oscillations in the potential across the interfacial region closely resemble

those in pure water at the same values of the applied potential.

That the Poisson potential is exhibiting perfect screening is quite surprising as the profiles

of the ion density obtained by averaging over the whole simulation runs are manifestly not

well equilibrated (see figure 10). Even at V0 = 0 we see an excess of ions at the left-hand side

of the cell, whereas the equilibrium ion density profile should be constant, except close to

the electrodes. It would appear that efficient screening can be caused by an appropriate local

arrangement of cations and anions, relaxation of the whole ion density profile is not necessary.

The failure to reach a fully equilibrated ion density profile arises primarily because of the

slow rate of relaxation of the concentration by diffusion (and, perhaps, an inappropriate

initialisation of the ion positions in the simulations). The rate should depend on the diffusion

coefficient divided by the square of the distance between the electrodes, and because we have
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used a large cell in the hope of seeing the interfaces well separated by bulk, the relaxation

times have become extremely long. There is a second slow relaxation process, however.

Examination of the Li+ profile close to the left-hand (positively charged) electrode shows a

sharp peak in the region associated with the adsorbed layer of water. This peak arises from

the presence of a single cation ion in this layer throughout the V0 = 0 and V0 = 0.27 V runs;

it was placed there in the initial configuration and remained until the electrode potential

was increased to 1.36 V. That this process is so slow is because exchange of an ion between

the strongly adsorbed layer of water and the bulk is very slow, effectively because the ion

cannot carry its coordinating water molecules between the two regions.

We can examine the barrier which arises to prevent exchange between the adsorbed layer

and the bulk by umbrella sampling techniques. We compute the mean force, F (z), in the

z direction perpendicular to the electrode on an atom i in the simulation by constraining

the atom i at some position z0 in a harmonic potential Uz0(z) = k
2
(z − z0)

2, where k is the

force constant of the harmonic well, taken to be 100 kBT Å
−2

. The mean force on atom

i at position z0 can be estimated as F (z0) = −k(z̄ − z0) where z̄ is the average value of

z for species i constrained to Uz0(z) during a simulation. We performed the mean force

calculations on a Li+ ion and an oxygen centre of a water molecule in a LiCl(aq) solvent at

zero applied potential (V0 = 0.00). In addition we computed F (z) for the oxygen centre in

a pure water with electrode potentials V0 = ±2.72 V. This method for generating the mean

force (and subsequently the potential of mean force (PMF) by integration) can be sensitive to

the set of initial conditions [35]. One set of initial conditions, which corresponds to electrode

desorption, was initiated by choosing an already adsorbed species setting z0 at the adsorption

distance and equilibrating with Uz0(z) for 1 picosecond. The next member of this set of initial

conditions was created by setting z0 → z0 + 0.26Å and again equilibrating with Uz0(z) for

1 picoseconds. This process is continued, in increments of 0.26 Å for approximately 5 Å.

Another set of initial conditions, corresponding to electrode adsorption were generated in an

analogous fashion by selecting an atom in the bulk and moving z0 towards the electrode in

0.26 Å steps. The mean force was computed by averaging z̄ over a 20 picosecond trajectory.

The potentials of mean force obtained by integration over F (z) show a large degree of

hysteresis, which often arises when there is a free energy barrier in the chosen coordinate

(z) frustrating equilibration on short timescales. In other words, the reaction mechanism

for electrode adsorption is not correctly characterized simply by a species distance from the
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electrode. For the atom to move into the adlayer it is necessary for an already adsorbed water

molecule to vacate an adsorption site, thus we might expect that a more suitable reaction

coordinate would describe the collective rearrangement which this entails. Nonetheless, the

calculated potential of mean force curves are informative.

If we focus firstly on the adsorption PMF for Li+, we see that there is a substantial barrier

at about 5 Å for the movement of the ion from the bulk into a relatively stable position

where the cation sits between the first and second adlayers located about 4.4 Å from the

electrode surface; this position is illustrated at the left-hand electrode in figure 2. This

barrier arises from the reorganisation of the solvation shell of the Li+ ion which is necessary

for it to be accommodated in this layer. Note that a similar barrier appears in the desorption

pathway. There is then a second barrier before the ion is adsorbed at the electrode surface.

In this region the hysteresis in the two curves is pronounced. On the adsorption pathway the

ion must force an already adsorbed water molecule out of the way, so the energy increases

steeply. On desorption from the adlayer there is also a large energy increase as the process

leaves an empty adsorption site on the electrode surface.

The PMF for water shows no barrier for exchange of water molecules between the bulk and

the second adlayer. A large degree of hysteresis then sets in, associated with the replacement

of an already adsorbed water molecule by a molecule from the bulk. The barrier to desorption

from the first adlayer suggested by these data is of the order of 10 kBT , sufficient to lead to

very slow exchange of the adsorbed water and the bulk.

V. CALCULATION OF THE MARCUS CURVES FOR ELECTRON TRANSFER.

In order to examine how the electrical potential and the water structure in the interfacial

region affect the rate constants for electrochemical charge transfer we have followed the

scheme illustrated in figure 2 for the aqueous Ru2+/Ru3+ couple close to the model metallic

electrode. Similar calculations have been reported recently for a redox-active molten salt

system [18], where the problems caused by the very slow equilibration of the concentration

profiles we have noted above are not so marked and where the statistical precision necessary

to validate the calculations was relatively easily obtained. We refer the reader to that paper

for full details of the calculation and merely recapitulate some essential details here.

We calculate the probability distribution functions for the vertical transition energy be-
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tween the two redox states, δERu2+→Ru3+ for oxidation and δERu3+→Ru2+ for reduction. The

vertical transition consists of changing the identity (i.e. charge and interaction potentials)

of a single ion at some configuration along an MD trajectory with the electrode potentials

set at some value V0 and, without changing the atomic positions (as befits the vertical or

diabatic nature of the Marcus curves), relaxing the electrode charges. The vertical tran-

sition energy is the difference in the total interaction energy between the initial and final

states. There is a constant term in this energy gap that depends upon the metal of which

the electrode is made (through its work function) and reacting ion (through the gas-phase

ionisation energy (Ru2+ → Ru3++e−), but independent of the electrolyte solution. We

have arbitrarily set the value of this constant to make the mean energy gap of Ru2+ to be

the negative of the that for Ru3+ when V0 = 0; the consequences of this will be illustrated

below.

In both oxidation and reduction, as discussed in detail in reference [18] a balancing charge

is transferred to the electrodes and the energy of this, which depends on the potential

applied to the electrodes, is included in the vertical transition energy [36]. We then return

the identity of the ion to its initial value and continue the MD trajectory. By repeatedly

sampling these transition processes for redox species found at a given distance from the

electrodes we may build up probability distributions for the energy gaps, PRu2+(δERu2+→Ru3+)

and PRu3+(δERu3+→Ru2+), at different positions in the cell. Examples of the probability

distributions are shown in figure 9. They are calculated for a sample of ions located in the

middle of the simulation cell, and compared to those of ions adjacent to the electrode.

The mean positions of the distributions and their widths are found to depend quite

strongly on the position of the redox ion in the cell, as we will discuss below. The distri-

butions are found to be rather accurately gaussian, which is the expectation from Marcus

theory if the surrounding medium responds linearly to the change in the identity of the redox

species. Our potentials describing the interaction of the Ru2+ and Ru3+ with water were

chosen so that both cations had similar coordination shells and, as previous studies of redox

processes in the bulk have shown [8, 27, 37], under these conditions it is likely that the linear

response limit is applicable. Our data seems to be consistent with linear response even when

we consider the redox process for ions close to the electrode surface, despite the strength of

the interactions and the restricted nature of the water molecules in the first adsorbed layer.

Following Sprik and co-workers [7, 8], and making use of the special properties of the mean
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vertical gap for oxidation (∆E = δERu2+→Ru3+ = −δERu3+→Ru2+) as a reaction coordinate

[6, 9], we may evaluate the free energies of the Ru2+ and Ru3+ ions along this reaction

coordinate from the probability distributions

ARu2+(∆E) = −kBT lnPRu2+(∆E = δERu2+→Ru3+) + ĀRu2+ (4)

and

ARu3+(∆E) = −kBT lnPRu3+(∆E = −δERu3+→Ru2+) + ĀRu3+ , (5)

where ĀRu2+ corresponds to the free-energy at the minimum of the Ru2+ curve. Furthermore,

when the vertical energy gap is taken as the reaction coordinate the two free energy curves

are linearly dependent, i.e. [8, 38]

ARu3+(∆E)− ARu2+(∆E) = ∆E. (6)

This apparently simple relationship is remarkably powerful; it means that we can establish

a relationship between the origins of the two curves (ĀRu3+ and ĀRu2+) and also sample

the free energy surfaces for values of the reaction coordinate which are well away from

the most stable configurations simply by calculating the energy gap in the free-running

simulation. The ability to sample the curves away from their minima means that we can

obtain information on the Marcus curves in the vicinity of their crossing point, which is the

region which determines the kinetics of the electron transfer event.

The data points obtained from (4)- (6) are plotted in figure 13 for V0 = 0. Note that our

choice of the arbitrary energy added to the gap to represent the work function and ionisation

energy has resulted in only a small difference between the mean free energies of the oxidised

and reduced forms for the mid-cell position: experimentally, the reduction potential for this

couple is 0.249 V with respect to the standard hydrogen electrode, so the relative positions

of the minima in the curves should be similar to reality and the electron transfer in the

“normal” Marcus régime at V0 = 0.

If the probability distributions really are Gaussian, equations 4 and 5 show that the Mar-

cus free-energy curves will be harmonic about the mean values of the reaction coordinate for

the oxidation and reduction processes, i.e. the peak positions of the respective probability

distributions 〈∆E1〉 and 〈∆E2〉, respectively. It was shown by Tachiya [38] that under this

Gaussian assumption all properties of the Marcus curves can be predicted simply from a

knowledge of 〈∆E1〉 and 〈∆E2〉; the necessary manipulations are described in the previous
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paper [8, 18]. These predicted curves are shown by solid lines in figure 13 and are seen

to provide an accurate representation of the data. This applies both for the data obtained

for redox ions close to the centre of the cell and also close to the electrode surfaces, de-

spite the fact that the values of 〈∆E1〉 and 〈∆E2〉 themselves depend quite strongly upon

the distance from the electrode. The position-dependence of the widths of the probability

distributions which we noted in discussing figure 9 is therefore seen to be contained within

the Gaussian description of the fluctuations in the reaction coordinate and related to the

position-dependence of 〈∆E1〉 and 〈∆E2〉.
The parameters which are normally used to describe the shapes of the Marcus curves are

∆A and the reorganization energy λ, see figure 1. In the Gaussian/linear response régime,

both may be written in terms of the mean energy gaps [8, 38]:

∆A =
1

2
(〈∆E1〉+ 〈∆E2〉) (7)

and

λ =
1

2
(〈∆E1〉 − 〈∆E2〉), (8)

with λ = λ′ in figure 1. In this reǵime the activation free energy for electron transfer is

given by the famous expression [5]

∆A‡ =
(∆A+ λ)2

4λ
. (9)

The dependence of ∆A and λ on the position of the redox ion in the cell and on the

applied potential is illustrated in figure 14. The behaviour of these parameters parallels

that seen in the molten salt simulations [18] and we refer to that paper to fully vindicate

the interpretations of the data which we offer below.

The reorganisation energy λ is seen to be virtually independent of the applied potential,

but strongly dependent on the position of the ion in the cell. The latter is associated with

the way in which the polarization of the electrodes (image charge effect) contributes to the

vertical energy gap. In passing from the initial state, say Ru2+, to the final state Ru3+ we

create a unit positive charge at the location of the redox ion. When we allow the relaxation

of the electrode charges to re-establish the constant potential condition we not only allow

the transfer of one unit of negative charge to the electrodes, we also allow the electrode

to be polarized by the newly-created positive charge. The interaction between the newly

created image charge and the change in the charge of the redox ion is not screened because
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the positions of the electrolyte atoms do not relax after the excitation event in a diabatic

description of the charge transfer process. Since the image effect contributes to 〈∆E1〉 and

〈∆E2〉 with equal magnitude but opposite sign, it does not affect the value of ∆A, which is

seen to be z-independent. The reorganization energy is, however, strongly affected by the

image effect. Marcus [39] obtained an expression for the reorganization energy appropriate

to an ion in a dielectric fluid at a distance d from a single metallic surface,

λMarcus(d) = δq2

[
1

ε∞
− 1

εs

] (
1

2a
− 1

2d

)
, (10)

where δq is the charge difference between the reduced and oxidised species. When d is

large, this expression gives the reorganization energy for a redox process in the bulk fluid:

it contains the contribution the non-electronic part of the dielectric response of the fluid

(i.e. that caused by reorganization of the nuclear positions) to the change in the charge

of a redox species with radius a; as such it involves (in the first bracket) the difference

between the static ε−1
s and infinite frequency ε−1

∞ longitudinal dielectric susceptibilities. We

cannot compare directly with this expression because our sample geometry has two metallic

surfaces and is periodic in the transverse direction. However, we can compare directly with

the position-dependent energy of a charge introduced into an empty simulation cell, this is

the effective image interaction energy in our periodic system [18] when the newly created

charge is in a vacuum. Away from the interfaces, any difference between this quantity

and the reorganisation energy should reflect the effective dielectric screening function of our

simulated electrolyte (i.e. the factor analogous to the square-bracketed term in equation 10).

In fact, we see that the two curves coincide well showing that the factor is indistinguishable

from one. In our simulated system the water molecules and ions are not polarizable, so ε∞

is just unity and since for SPC/E water εs is about 70 we can only conclude that our data

is consistent with the Marcus expression. Close to the electrodes, the reorganisation energy

does appear to depart from the modified Marcus expression, and this could be associated

with the effect of the proximity of the electrode on the solvation characteristics of the water

molecules there. However, the statistics in this domain are not good, as the ruthenium ions

are even more reluctant to reorganise their solvation shells and approach the electrode than

were the Li+ ones. Better sampling methods for the vertical energy gaps are required before

firm conclusions may be drawn.

In the central part of the simulation cell, the reaction free-energy ∆A varies linearly with
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the potential applied to the electrode to which the electron is transferred. This reflects

the change in the energy of the electron which is transferred to the electrode, which, as we

have emphasised, contributes to the free-energy of the oxidised state. As the redox species

approaches the electrode surface, the reaction free-energy seems to be remarkably constant.

It might have been expected to show the kind of fluctuating behaviour evident in the Poisson

potential, since conventional electrostatic considerations would suggest that this potential

should influence the relative energies of the doubly and triply charged ions. However, as

discussed in the molten salt context [18], this is not the potential which should be used

to discuss the changes in the energy levels of an ion. Rather, we should be considering

the potential at the ion’s centre due only to the other charges present in the system: this

might be better called a Madelung potential. The difference between the two potentials is

surprisingly large, as illustrated in figure 15 where we show the z-dependence of the mean

Madelung potentials experienced by the Ru2+ and Ru3+ ions compared with the Poisson

potential.

Not only does the Madelung potential depend on the identity of the species on which

the potential is evaluated, it is seen to be constant across the simulation cell except in the

immediate vicinity of the electrode surfaces - its behaviour illustrates perfect screening much

closer to the electrode surface. The z-independence of the Madelung potential therefore

provides a much better explanation of the insensitivity of ∆A to z than does the Poisson

potential.

VI. SUMMARY AND CONCLUSION

The methods described have allowed a full, self-consistent calculation of the liquid struc-

ture and electrical potentials for an aqueous ionic solution close to a model metallic wall

maintained at a constant electrical potential. The simulation is a direct realisation of a

model electrochemical interface, as it appears in text books. Using a realistic potential for

water-platinum interactions, we find a strongly absorbed layer of water molecules on the

electrode with the molecules oriented in the plane of the interface at zero potential, in com-

mon with earlier studies [32]. Despite the strength of the absorption, the water molecules

do reorient as the electrode potential is changed and this affects the behaviour of the elec-

trical potential across the interface and the differential capacitance of the electrode. The
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absorption of cations at the electrode is strongly inhibited by the requirement for them to

reorganise their hydration shells to approach the electrode surface.

We have begun to characterise how the interfacial water affects the rate constant for

electrochemical charge transfer by directly calculating the Marcus free energy curves for the

oxidised and reduced species at different positions in the cell with a particular choice of

reaction coordinate. The fluctuations in the solvation structure which influence these curves

were shown to be accurately Gaussian for the modelled Ru2+/Ru3+ couple, consistent with

linear response of the solvent to the charge state of the redox ion. The reorganisation energy

was strongly dependent on the distance of the redox species from the electrode surface and

independent of the electrode potential. The effect was traced to image charge interactions

with the metal surface. With the statistics available to us at present, we could not detect

an effect of the altered dynamical characteristics of the absorbed water on the solvation

fluctuations when the redox species was close to the electrode surface. The reaction free

energy ∆A measures the difference in the free energies of the oxidised and reduced states

with the redox ion at a given distance from the electrode surface. Contrary to textbook

expectations, its position dependence does not resemble the mean electrical potential. It only

deviates from the bulk value in the immediate vicinity of the interface where the competition

between solvating the electrode and solvating the redox species becomes a factor.
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FIG. 1: Schematic illustration of the Marcus construction for understanding the electrochemical

oxidation of some species R= M+ to O=M2+ with transfer of the charge (δq) to an electrode

maintained at a potential V . The quantities ∆A, λ and λ′ are the reaction free-energy and

reorganization energies for oxidation and reduction, respectively
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FIG. 2: Schematic depiction of electron transfer
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FIG. 3: Snapshot of the distribution of charge on the polarizable model electrode. Electrode atoms

are shaded according to their partial charge, with blue shading corresponding to positive charge

and red shading corresponding to negative charge. In this rendering, the darkest shade of blue

corresponds to a partial charge of 0.1e, and the darkest shade of red to a partial charge of −0.1e.

In the solvent region the yellow spheres represent Cl− ions, and the light blue and dark blue spheres

represent Ru2+ and Ru3+ respectively. Water molecules have been omitted for clarity.
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FIG. 4: The Poisson potential across the model electrochemical cell for pure water. The oscillations

near the electrodes result from ordering of the solvent in the vicinity of the electrode.
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FIG. 5: A snapshot of the adsorbed water layer, and their profiles at different values of the applied

potential V0. The orientation of adsorbed water molecules is noticeably altered by the change in

electrode potential.
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FIG. 6: The distribution of cos(θ) where θ is the angle between a water’s O-H bond vector and

the vector normal to the electrode surface (pointing into the bulk). The left-hand panel is the

distribution taken over the first two solvent layers adjacent to the positive electrode, and the

right-hand one the distribution taken over the first two solvent layers adjacent to the negative

electrode.
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FIG. 7: The left-hand panel shows the distribution of the charges on the atoms which make up the

innermost layer of the negative electrode. The changes in the orientations of the water molecules

are accompanied by the development of a bimodal distribution of wall charges. The right-hand

panel contrasts the O-H bond cos(θ) distributions obtained in constant potential (figure 6) and

constant charge simulations; the former are shown by lines and the latter by symbols.
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FIG. 9: The probability distributions PRu2+(δERu2+→Ru3+) (squares) and PRu3+(−δERu3+→Ru2+)

(circles) at different positions in the cell. The distributions plotted with open symbols are taken in

the bulk, i.e. 37 Å ≤ z ≤ 39 Å, and the distributions plotted with filled symbols are taken adjacent

to the electrode, i.e. 71 Å ≤ z ≤ 75 Å.
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FIG. 10: The density profiles of the Li+ and Cl− ions across the simulation cells for various values

of the applied potential. The results are the average of runs of 2.5 nanoseconds, despite the lengths

of these runs we see that the average density profiles do not accord with those expected at full

equilibrium. Nevertheless, the Poisson potential profiles calculated in these runs do show perfect

screening (see figure 11).

26



-3

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80

Ψ
/
V

z/Å
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FIG. 11: The Poisson potential for a solution of LiCl(aq). In contrast to the Poisson profile for

pure water (shown in Fig. 4), the LiCl solution screens the electrodes perfectly beyond roughly 15

Å from the electrode surface.
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FIG. 12: The potentials of mean-force obtained for an Li+ ion (left) and for the oxygen atom

(right) of a water molecule calculated with initial conditions appropriate to electrode desorption

and electrode adsorption. The curves with dash lines represent electrode desorption and the curves

with solid lines represent electrode adsorption. The results show a large degree of hysteresis,

consistent with fact that as a species is brought into the adlayer, a resident water molecule must

be displaced.
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FIG. 13: The free energies of Ru2+ (squares), and Ru3+ (circles) along the reaction coordinate

∆E. The filled symbols are the distributions as computed from simulation data and the hollow

symbols are constructed using the relationship in Eq. 6. Solid lines are the linear response (Marcus)

prediction, computed using 〈∆E1〉 and 〈∆E2〉 along with Eqs. 7-10. Panel (a) is a representative

distribution representative of bulk ions and panel (b) is the distribution of ions adsorbed at the

electrode.

-4

-3

-2

-1

0

1

2

3

4

5

10 20 30 40 50 60 70

V
ol

ts

z/Å
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FIG. 14: Dependence of the reaction free energy ∆A (lower three curves) and the reorganization

energy λ (upper three curves) on cell position at different values of electrode potential V0. The

solid lines shows the variation of the energy (shifted by an additive constant) of a test charge as

it is moved across an otherwise empty cell, which reflects the energy associated with the image

charge effects in our simulations.
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